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Abstract

This paper presents the measurements of force coefficients and Strouhal numbers (St) on four cylinders in a square

configuration at subcritical Reynolds numbers (Re) using a piezo-electric load cell in a wind tunnel. Six spacing ratios

(L/D) varying from 1.69 to 3.83 and 13 angles of incidence a ranging from 0� to 180� at a 15� interval covering all

orientations were investigated. With the help of a laser-induced fluorescence visualization technique, it is found that the

variation of forces and Strouhal numbers with L/D are governed by three distinct flow patterns. They are: (a) free

oscillations of shear layers and vortex formation at large L/D; (b) reattachment of shear layer or shielding flow for

intermediate L/D and (c) narrow gap flows for small L/D. Two major causes for large fluctuating forces are discussed in

this paper and the force results are compared with other measurements. It is concluded that the flow patterns, i.e., the

development and the interferences of the free shear layers and the distribution of the wake vortices of the cylinders play

a key role in the variation of the forces and shedding frequencies. Consequently, the downstream cylinders are usually

subjected to more serious fluctuating forces under the influence of unsteady wake vortices. Also, the upstream cylinders

normally experience larger mean drags than the downstream ones.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is a well-known phenomenon that when a single bluff body or a bundle of bluff bodies are subjected to a cross flow,

vortex shedding from the structure would induce fluid excitation forces which, in turn, lead to flow-induced vibration.

Although flow-induced vibration is governed by a number of major parameters, such as Reynolds number (Re),

effective damping ratio, mass ratio, etc., the forces including the mean forces, the fluctuating forces and their associated

fluctuating frequencies play a very important role in flow-induced vibration. The resulting vibration has significant

impact on the fatigue life of structures and could cause disastrous failure of industrial facilities with heavy financial

losses and even loss of human lives. Therefore, engineers and scientists have spent much effort to investigate the

fluctuating forces and the vortex shedding characteristics of cylindrical structures (see, e.g., Newman and Karniadakis,

1997; Sakamoto and Haniu, 1994).

In general, several mechanisms will give rise to flow-induced vibration. The most frequently encountered are those

due to vortex shedding, turbulent buffeting, fluidelastic instability and acoustic resonance (Paidoussis, 1982; Fitzpatrick

et al., 1988; Price and Zahn 1991; Oengoren and Ziada, 1998). Any bluff body exposed to a cross flow may experience

one or more of these mechanisms. Due to the complexity of flow separation and free shear layers interaction of bluff

bodies, the mechanism of fluid excitation forces and their related frequencies is a highly nonlinear phenomenon.
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Circular cylinders, being a typical example of bluff bodies, such as those found in power transmission lines, heat

exchangers in nuclear power plants, offshore structures, suspension bridges, etc., are the most widely used bluff bodies

in industry. Therefore, studies on a circular cylinder or an array of circular cylinders have attracted much more

attention, compared with other types of bluff bodies, and are of great importance both in fluid dynamics theory and

engineering applications.

Studies on a single circular cylinder in a cross flow have been carried out most extensively and insight into the

mechanisms of flow-induced vibration has been gained by studying the force characteristics due to various situations of

fluid–structure interactions. For example, So and Savkar (1981) measured the spanwise averaged steady and unsteady

forces induced by a uniform or turbulent cross flow over a smooth circular cylinder using static pressure taps, piezo-

electric three-axis load cells and a hot film. The parameters examined in their experiment included Re, ranging from

2� 104 to 2� 106, the free-stream turbulence intensity, the integral length scale-to-diameter ratio and the active span-

to-diameter ratio. On the other hand, Sin and So (1987) measured the induced local unsteady forces acting on cylinders

placed in a cross flow using the same techniques. In addition, simultaneous measurements of the flow-induced local

unsteady forces on the cylinder and the stream velocity in the wake were carried out by Baban and So (1991a, b). These

results together with mean drag measurements along the span and available literature data were used to evaluate the

flow mechanisms responsible for the induced unsteady forces and the effect of aspect ratio on these forces. The above

experiments (Baban and So, 1991a, b) were conducted at a cylinder Re=46,000 using three finite-span cylinders with

span-to-diameter ratios of 2, 1.5 and 1, respectively.

Besides the work mentioned above, efforts have also been made on similar aspects of cross flow around a single

cylinder using different experimental set up. For example, Schewe (1983) conducted force measurements in a

pressurized wind tunnel from subcritical up to trans-critical Re (2.3� 104 to 7.1� 104) without changing the

experimental arrangement. The steady and unsteady forces and the Strouhal frequencies were measured by means of a

piezobalance (assembly of three-component load piezo-electric force-measuring elements). In the critical Re range, two

discontinuous transitions that could be interpreted as bifurcations at two critical Reynolds numbers were found. West

and Apelt (1993, 1997) performed another important experiment on the force measurements of a single cylinder in a

cross flow. The root mean square (rms) lift and drag forces in subcritical flow (1� 104 to 2.5� 105) on an elemental slice

of the cylinder were established using accurate measurements of the fluctuating pressure distribution. The spanwise

cross-correlation of the fluctuating pressure and the elemental fluctuating forces were presented, including the effects of

the variation of Re, aspect ratio, free stream turbulence and wind tunnel blockage. Other interesting investigations, such

as Fox and West (1993a–c), Szepessy and Bearman (1992) and Blackburn and Melbourne (1996), have also been carried

out. Apart from the experimental investigations, continuous efforts on numerical methods have been pursued and

detailed information about the different mechanisms of flow-induced vibration has been obtained (So et al., 2001;

Blackburn and Henderson, 1999; Freitas, 1995).

The variation of the forces and Strouhal frequencies are further complicated by the presence of neighboring cylinders.

The forces and shedding frequencies would also vary greatly with changes in the ratio of the center-to-center cylinder

spacing L to their diameter D, the orientation of the cylinder array and the number of cylinders, in addition to the

characteristic parameters mentioned above. Therefore, the nonlinear interactions between two cylinders or among

multiple cylinders are far more complicated than the flow-induced vibration phenomena given rise by a single cylinder.

These interaction phenomena have been widely investigated because of their inherent importance and practical

significance in many branches of engineering.

The interference between two cylinders, being the simplest example of an array of cylinders, has drawn considerable

attention in the past. To cite a few examples, Price and Paidoussis (1984) experimentally investigated the mean lift and

drag forces acting on two and three cylinders over a wide range of L/D and suggested that the principle of superposition

could apply in the determination of force coefficients. Zdravkovich (1987) proposed to classify the flow interference

between two cylinders into three categories after completing a comprehensive review of numerous experimental

investigations on two cylinders in a cross flow and has drawn a map of mean force coefficients and Strouhal number (St)

for two cylinders in the subcritical Re regime. On the other hand, Ting et al. (1998) employed both pressure and force

measurement techniques to measure the fluid-elastic forces on one of two staggered circular cylinders over a wide range

of configuration and Re. Besides the force measurements cited above, other investigations on fluid–structure interaction

between two cylinders and their effect on flow pattern, flow field, bistable flow and related variation of St have also been

carried out (Kim and Durbin, 1988; Sumner et al., 1999, 2000).

It has now been realized that the principle of superposition cannot be applied to the highly nonlinear situation of

cross flow around cylinders; therefore, only a few papers have reported on multi-cylinder arrays compared with

numerous papers published on two cylinders and one cylinder. Even among the papers on multi-cylinders, many of

them were on multi-cylinders in line, side-by-side or in tandem (Guillaume and LaRue, 1999; Kareem et al., 1998). The

investigation of Lam and Cheung (1988) on three cylinders in an equilateral arrangement, on the other hand, clearly
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showed that some well-known flow patterns in two-cylinder arrays have been significantly changed owing to the

presence of a third cylinder. Hence, work on the mechanism of flow-induced vibration and the overall flow patterns

around multi-cylinder arrays need further exploration.

A four-cylinder array in a square configuration is a basic unit in multi-cylinder arrays and tube banks. The study of

four-cylinder arrays would be helpful to the understanding of the flow physics, of the flow interaction mechanisms and

of the force characteristics of the more complicated flow in much larger cylinder arrays, which are specially evident for

the cases of in-line square and rotated square arrangements in heat exchanger tube banks. It also has many direct

practical applications, such as in offshore structures. Nevertheless, investigation on this simple cylinder array is still

rather scarce and has not been well documented in the literature. The flow visualization results of Lam and Lo (1992)

and Lam et al. (2003) revealed that flow around the four cylinders in a square configuration is far more complicated

than that in one or two cylinders. Using a pressure method to measure force, the experiments (Sayers, 1988, 1990; Lam

and Fang, 1995) on four cylinders at Re=3� 104 and 1.28� 104 revealed that the magnitude of the mean lift and drag

coefficient is strongly influenced by the orientation of the array group to the free stream. At certain L/D and a;
asymmetrical vortex shedding occurs, while in other situations, vortex shedding behind certain cylinders may be

completely absent. In addition, Farrant et al. (2000) and Lam et al. (2001) attempted to simulate the flow around four

cylinders in a square configuration at small and subcritical Re and at two different a using cell boundary element and
surface vorticity method, respectively. However, their attempts cannot reproduce the flow patterns as obtained in

experiments at certain L/D and a: Furthermore, important questions remain unanswered. For example, the fluctuating

forces acting on the four cylinders, though they are the primary forces in flow-induced vibration, have not been

measured systematically. Hence, the first question is how these fluctuating forces and shedding frequencies will change

with different flow patterns? How will the mean and fluctuating forces vary at different a and L/D? Are the mean force

characteristics obtained by pressure integration at mid-span similar to those deduced from direct spanwise averaged

measurements using a load cell? Is the St obtained by counting vortices in flow visualization study, such as that carried

out by Lam and Lo (1992), equivalent to the St determined from spectral analysis of the measured fluctuating forces?

These and other less important questions need addressing if fluid–structure interaction of multiple-cylinder arrays in a

cross flow were to be understood.

In an attempt to answer some of the above questions, the present work aims to experimentally investigate the forces

acting on four cylinders in a square configuration, including the mean and fluctuating force, and the St. A load cell is

used to measure the spanwise averaged force acting on the cylinders and the experiments are carried out in a close

circuit wind tunnel. Therefore, the forces acting on the cylinders have relatively small magnitude and an extremely

sensitive force transducer with a suitable dynamic range is required to correctly resolve the fluctuating forces. The

experiments are carried out in the L/D range of 1.69–3.83 at a 0.43 interval and a a range of 0�–180� at a 15� interval. It
is hoped that these studies could provide a useful database and a penetrative understanding of the physics of fluid–

structure interaction of multiple-cylinder arrays in a cross flow.

2. Experimental arrangement and calibration

2.1. Wind tunnel

The experiments were conducted in a closed circuit low-speed wind tunnel with a cross-section of 0.6m� 0.6m and a

2m long test section. The walls of the test section are made of Perspex to facilitate cylinder model installation and flow

observation. The velocity in the test section is uniform and could be continuously varied up to 40m/s using a speed

controller. The thickness of the boundary layer at the test location is about 20mm while the free stream turbulent

intensity is estimated to be less than 0.2%. During the experiment, a standard Pitot-static tube was used to monitor the

wind speed and the pressure was read using an electronic micro-manometer made by Furness Control Limited. The

temperature in the wind tunnel was kept constant by regulating the air temperature in the laboratory.

2.2. The cylinder models

In this experiment, the free-stream velocity is in the x direction, which is also the positive drag direction, while the

positive lift is in the y direction. Among the four cylinders arranged in a square configuration, only one of them was

instrumented and the forces on it were measured directly by a load cell. A schematic diagram of the array configuration

is shown in Fig. 1. The incident angle b was measured with respect to the diagonal of the instrumented cylinder and its

counterpart on the opposite corner, i.e., the diagonal joining cylinders 1 and 3. On the other hand, the angle of attack a
was measured with respect to the line joining the center of cylinders 1 and 4 and referred to as array angle when the
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cylinders were considered as an array group. Therefore, as cylinder 1 rotates from one corner to another, b varies and

the change depends on a: The change of b with respect to a is given in Table 1.

All the cylinders were made of hollow brass tubes. One end of each tube was sealed with a flat brass cap while the

other end was fitted with an adapter cap. The outer diameters of the cylinders were 35mm. The cylinders spanned

across the length of the test section and this led to an aspect ratio of about 17 and a blockage ratio (per cylinder) of

5.8%. The single cylinder aspect ratio is larger than but the blockage ratio is less than those reported on one cylinder by

other investigators; a summary comparison is given in Baban et al. (1989). The projected area blocking the oncoming

flow is constant for a square configuration; therefore, the total blockage in the present setup is 11.6%. This blockage

falls within the single cylinder blockage reported in West and Apelt (1982) and Schewe (1983), and less than the

experimental setup of Richter and Naudascher (1976). In the experiments of West and Apelt (1982), they found that the

measured mean drag coefficient did not have any significant variation within a blockage range of about 9–15% over an

aspect ratio range of 6–8. Nevertheless, it should be borne in mind that blockage does contribute to the noted

experimental scatter on the measured mean drag among various studies (Baban et al., 1989). Just as in previous reports,

no correction was made in the measured forces to account for blockage in the present results. All four cylinders were

installed vertically in a cantilever manner with a clearance of 1–2mm between the ends of the cylinders and the bottom

wall of the test section.

Three normal cylinders were installed vertically on a turntable plate that was flush mounted on the upper wall of the

wind tunnel and could be rotated to any desired angle. The ends of the adaptors fitted in the three cylinders went

through this turntable plate and were tightened up by nuts and bolts from outside of the test section. Therefore, the
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Fig. 1. A schematic layout of the four-cylinder array.

Table 1

The relationship between array attack angle a and cylinder incident angle b

Array attack angle a (deg) Cylinder number Cylinder incident angle b (deg)

0 Cylinder 1 45

Cylinder 2 �45
Cylinder 3 �135
Cylinder 4 135

15 Cylinder 1 30

Cylinder 2 �60
Cylinder 3 �150
Cylinder 4 120

30 Cylinder 1 15

Cylinder 2 �75
Cylinder 3 �165
Cylinder 4 105

45 Cylinder 1 0

Cylinder 2 �90
Cylinder 3 180

Cylinder 4 90
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length of the cylinder was about 600mm. The instrumented cylinder, on the other hand, was installed through a hole of

39mm diameter on the plate with a load cell installed. The clearance between the hole and the cylinder is about 1–2mm.

The load cell was secured on a rectangular plate with two transverse slots, while this plate was in turn installed on a

second bigger rectangular plate with two slots in the streamwise direction. The big rectangular plate was then mounted

on the yoke of the wind tunnel. Therefore, the instrumented cylinder could move to any place where the hole was. The

length of the instrumented cylinder is about 640mm. A schematic diagram of the array installation is shown in Fig. 2.

The spacing ratio, L/D, is defined as the center-to-center distance of adjacent cylinders divided by the cylinder

diameter as shown in Fig. 1. On the turntable disc, there were different patterns of holes arranged at different distances,

corresponding to different L/D of the cylinders. The maximum L is 134mm, corresponding to L/D=3.83, while the

minimum L is 59mm, corresponding to L/D=1.69. Between these two limits, seven equi-spaced holes at 15mm interval

were created. The sidewall proximity effects are insignificant for the present configurations studied, even for the rotated

square configuration of L/D=3.83 where the smallest distance between the center of the cylinders and the sidewall of

the wind tunnel is 205mm (or about 5.9D). Past experience on vortex shedding frequency and flow patterns indicated

that 5D is enough to minimize proximity effects. This estimation is supported by various numerical simulations which

reported computational domains with similar range of transverse distance to the wall. For example, the transverse

distance to the wall in the numerical studies of Li et al. (1992) and So et al. (2001) is 5D, while 7D is specified in the work

of Tutar and Hold (2001).

2.3. Force measurement and load-cell calibration

A piezo-electric load cell has the advantage of high response, high resolution, high stiffness and can give the integral

force directly, therefore, many researchers (e.g. So and Savkar, 1981; Schewe, 1983) used this technique to measure the

spanwise averaged mean and fluctuating force acting on a single cylinder. In this study, one Kistler Model 9251A piezo-

electric three-axis load cell was used to measure the spanwise averaged forces. The load cell was clamped between two

machine-polished stainless steel plates through bolts with a pre-load of approximately 100 kN exerted on the load cell.

Since the maximum force on the load cell was far less than 10 kN, the requirement for pre-load-to-measured-load ratio

of above 10 was achieved. In fact, this ratio is more than 100 for this series of experiments. Therefore, the signal-to-

noise ratio of the measured force is very high. The instrumented cylinder was mounted vertically in the z direction, while

the x and y directions of the load cell are in the drag and lift direction, respectively.

Calibration of the load cell was carried out statically using dead weights as shown in Fig. 3. The same weight acting

on the beam could produce a decreasing output voltage when the moment arm is increased. In this study, three different

weights, 0.2, 0.3 and 0.5 kg, were used. By adjusting the scale coefficients of the charge amplifiers linearly to maintain

the output of the load cell to have a constant voltage at the origin, the calibration result thus obtained is shown in

Fig. 4. It can be seen that the drop of voltage output for the lift and drag direction changes linearly with the moving of

the dead weight along the cylinder span. Therefore, it can be concluded that the linearity of the output voltage with
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weight at one specific location and along the span has been established. Furthermore, the linearity was found to be

repeatable. Assuming a uniform distribution of the wind load along the span, the averaged forces acting on the

instrumented cylinder can be determined.

2.4. Data recording and processing

A United Electronics Industry (UEI) WIN-30PGSH 12-bit A/D board with 16 analogue input channels was used to

record the force signals. The maximum sampling rate is 1000KHz. The signals from the load cell in its x and y

directions were simultaneously measured and low-pass filtered, amplified and then digitized at a sampling rate of

3.33 kHz per channel. They were then transferred to a personal computer through a multiplexer. The duration of each

record was about 20 s and the signals were analyzed using a MATLAB program.

2.5. Technique validation on a single cylinder

In order to test the reliability of the measuring system, the forces on a single cylinder and the associated St were

measured and compared with the results published in the literature. The force results are shown in Table 2. The

Strouhal number St=0.205 was obtained by analyzing the spectrum of the fluctuating lift force. It is in good agreement

with the generally reported value in the subcritical Re range (So and Savkar, 1981; Schewe, 1983). The measured mean

drag coefficient (CD) agrees well with the results of Schewe (1983) who reported a CD=1.22 in this range. Among the

reported measured root mean square fluctuating lift force coefficient C0
L; its value ranges from a low of 0.22 (Tadrist

et al., 1990) to a high of about 1 (Richter and Naudascher, 1976; So and Savkar, 1981). Different techniques have been

used to measure the fluctuating forces; these include piezo-electric load cells (Richter and Naudascher, 1976; So and

Savkar, 1981), load balance composed of piezo-electric load cells (Schewe, 1983) and miniature pressure transducers

(West and Apelt, 1997). The load balance gives a low value, while the pressure transducers yield values that are in

between those obtained from load balance and direct load cell measurements. The present measurements are closest to

those reported by Schewe (1983). In the experiment of Tadrist et al. (1990), they noted that many factors, such as aspect

ratio, blockage, turbulence intensity, tube end boundaries, etc., could have great influence on the measured fluctuating
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forces. Therefore, the large difference between the blockage ratio (5.8% vs. 10%) and aspect ratio (17 vs. 10) of the

present experiment and that of Schewe (1983) might be the major reasons for the noted discrepancy. According to the

experiments of West and Apelt (1997), at similar blockage and aspect ratio, the measured results for C0
L and the root

mean square fluctuating drag coefficient ðC0
DÞ were approximately at C0

L ¼ 0:25 and C0
D ¼ 0:06; which are in fair

agreement with the present results. Therefore, the current measurements are in agreement with reported values and the

measuring system can be considered reliable.

Clearance effect between the end of the cylinder and the wind tunnel wall was also assessed in this study. It was found

that a clearance of 1mm could produce a 2–3% higher value in the measured mean drag coefficient than that measured

at a clearance of 4mm. Although the influence of clearance was not very significant, all experiments were carried out

with a clearance of 1–2mm in order to assure consistent force measurements.

In our analysis, the resolution of the FFT results on shedding frequency was 1Hz, and the forces were allowed to be

measured to the nearest 18mN in the maximum range of �18 to 18N, so the uncertainty estimates caused by resolution
for St was about 1% and less than 1% for all forces. Furthermore, the cross talk between x and y directions of the load

cell is less than 1.2%, and the linearity of the output signals is within 1%. These data are specified in the technical data

sheet supplied by the company. They agreed reasonably with the static calibration of the load cell carried out in this

experiment. Taking other factors into account, such as misalignment, error in oncoming velocity measurement, etc., the

error limits in the present experiments were conservatively estimated to be no more than 10% for forces and less than

5% for Strouhal number.

Error bars with 10% uncertainty for all the forces and St are shown in the following figures for certain spacing ratios

L/D. Furthermore, the data for a single cylinder chosen as reference in the comparison with the variation of the induced

forces and shedding frequencies in the four cylinder arrays are taken to be CD=1.2, C0
L ¼ 0:22; C0

D ¼ 0:09 and St=0.2.

3. Experimental results and analysis

In order to investigate the change of flow patterns, if any, in the subcritical Re range for the flow around these

configurations and to check the shedding frequencies and the associated data more conveniently, the experiments were

carried out at different free stream velocities and L/D. The free stream velocities were selected as 9.7, 13.8, 18.1 and

22.3m/s for L/D = 3.83 and 3.4, and 9.7, 13.8, 17.7 and 19.4m/s for other smaller L/D. This leads to Re=2.25� 104,

3.2� 104, 4.2� 104 and 5.18� 104, respectively, for the two larger L/D, and Re = 2.25� 104, 3.2� 104, 4.1� 104 and

4.5� 104, respectively, for other smaller L/D. From the mean force measurements, it is evident that no change of flow

patterns occurred; therefore, only the results at 18.1 or 17.7m/s, i.e., at Re around 4.1� 104, are shown in all figures

where load cell measurements are reported.

With b increasing from 0 to 180� at an interval of 15� in the anti-clockwise direction, the instrumented cylinder would

pass the lower half of the plane as shown in Fig. 1. At the symmetric configuration of a ¼ 0� or 45�, the possible flow

field could be either corresponding to a symmetric flow or a flopping bi-stable flow. Therefore, the complete force

information on the four cylinders at different array angle a could be obtained with b varying from 0� to 180�. The

relationship between a and b is summarized in Table 1 for the range of b tested. To provide a systematic and concise

description of the results, and to study the effects of interference among the cylinders more clearly and directly, the

results are presented according to the array angle a instead of the incident angle b. Accordingly, a was varied from 0� to

45� at a 15� interval, i.e., four different orientations. The data discussed in the following include the mean forces, the

fluctuating forces and St and are presented in decreasing L/D.

3.1. In-line square arrangement

At a ¼ 0�; the cylinder array is an in-line square arrangement, and it can be regarded as two parallel rows of

two-cylinder arrays in tandem. Typical pictures of the flow patterns, which were carried out at Re=200 and 800 for
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Table 2

Load cell measured forces on a single circular cylinder

Re CD C0
L C0

D

4.8� 104 1.186 0.138 0.089

5.4� 104 1.218 0.217 0.091

6.0� 104 1.217 0.274 0.133
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L/D=4.0 in a water tunnel, are shown in Fig. 5. The flow visualization experiments were conducted with all four

cylinders installed on a circular vertical turntable in a cantilever manner, in a low speed closed-loop water tunnel with a

working section of 150mm� 150mm. The outer diameter of the cylinder was d=10mm, which leads to an aspect ratio

of about 15 and a blockage ratio (per cylinder) of B6.7%. These values are similar to those found in the wind tunnel.

Each well-polished Plexiglas cylinder has two dye injection holes of 0.5mm located at mid-span and on opposite sides.

The fluorescent dye was Rhodamine for upstream cylinders and Fluorescein for downstream cylinders, respectively.

The streak lines were illuminated using a 4W Argon-ion laser, and were recorded with a JVC GY-DV500 Camcorder.

Detailed description about the water tunnel and the facilities is given in Lam et al. (2003). From the flow visualization, it

can be found that below certain critical L/D, which would change with Re, the downstream cylinders were always in

the shadow of the upstream cylinders. Vortex shedding only occurred behind the downstream cylinders, i.e., cylinders 3

and 4.

Reviewing the flow phenomena of two cylinders in tandem would be useful to the understanding of the in-line square

arrangement at a ¼ 0�. As investigated and generalized by Zdravkovich (1987) and Igarashi (1981), two cylinders in

tandem would experience three major flow regimes with decreasing L/D. At large L/D, normally >4.0, the separated

shear layer would roll up alternately and form vortices behind the upstream cylinder. Immersed in the wake of the

upstream cylinder and impinged by the oncoming vortices, the vortex formation length of the downstream cylinder

would be much shorter and two turbulent vortices would form behind it. Therefore, the drag force on the upstream

cylinder is larger than that on the downstream cylinder. On the other hand, it is expected that the fluctuating forces on

the downstream cylinder are greater than those acting on the upstream cylinder. This is one major mechanism for

generating large fluctuating forces. The fluctuating lift force of both cylinders would exhibit a distinct frequency

identical to the shedding frequency but the downstream one would also show a second harmonic of the shedding

frequency.

For 2.1oL/Do3.0 and dependent on Re, the free shear layer separated from the upstream cylinder would shield or

reattach on the downstream one. Therefore, an almost stationary wake region would form in between them and the

wake vortices are only formed behind the downstream cylinder. Such flow pattern would lead to a sharp decrease of the

fluctuating lift force on both the up- and down-stream cylinder while the vortex shedding frequency of the upstream

cylinder would approach zero. With L/Do2.1, the downstream cylinder is immersed in the wake of the upstream one.

The immersion is so deep that the vortex shedding behind the downstream cylinder is actually formed by the free shear

layer detached from the upstream cylinder.

As for the flow around four cylinders in an in-line arrangement, the overall flow pattern is similar to the flow around

two cylinders in tandem at intermediate and large L/D because the interference between the up- and down-stream

cylinders is the major mechanism. With L/D decreasing further, the interference arising from the side-by-side cylinders

becomes more and more pronounce and the repulsive force becomes larger and larger. According to Lam and Lo

(1992), for a square cylinder array at L/Do1.7, a bi-stable state of the wide and narrow wake attached behind cylinders

3 and 4 occurred. On the other hand, for a two side-by-side cylinder array, this phenomenon would occur at L=D ¼
1:522:0: Therefore, this difference could be attributed to the presence of the upstream cylinders. From the flow
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visualization experiments, it was observed that the interference between two cylinders in tandem would be much more

severe than that between their side-by-side counterpart at and above intermediate L/D, while the interference would

become quite severe among all four cylinders at small L/D.

The St was determined from spectral analysis of the fluctuating forces using a power spectral density (PSD) plot. At

a ¼ 0�; cylinders 1 and 4 and cylinders 2 and 3 are symmetrical about the horizontal bisector (two rows form a mirror

image of each other), therefore, only the measured results on cylinders 1 and 4 are presented here because what is true

for cylinders 1 and 4 is also true for cylinders 2 and 3. Two typical normalized PSD plots, with different scales for the

fluctuating lift force of cylinders 1 and 4 at L/D=2.54 and at the same oncoming velocity, are shown in Fig. 6. It is

obvious that the spectral peak of cylinder 1 is small and weak while that of cylinder 4 is large and strong. Similar PSD

plots were obtained for the fluctuating forces for other L/D, but they are not shown to avoid repetition. All St results

were inferred from these PSD plots.

Fig. 7 shows the variation of St vs. L/D. The St of cylinder 4 is around 0.2 for all L/D measured. In addition, the

second harmonic shedding frequency was also detected, thus indicating that vortex shedding persists behind cylinder 4

throughout this L/D range. However, for cylinder 1, a distinct shedding frequency is clearly discernible at L/D=3.83;

while at L/D=3.4, the peak becomes rather obscure but is still identifiable. Further decrease in L/D gives rise to

essentially unidentifiable peaks at L/D=2.97, 2.54 and 2.11, thus St at these L/D vanishes. This represents indirect but

clear evidence that vortex shedding from cylinder 1 ceases and the flow phenomenon of shear layer reattachment or

downstream cylinder being in the shadow of the upstream cylinder occurs. With L/D decreasing further, a narrow and

prominent sharp peak appears again in the lift force PSD plot at L=D ¼ 1:69: The St thus determined is very close to

that obtained for cylinder 4 (Fig. 7). This could be attributed to the fact that when the upstream and downstream

cylinders are so close to each other, the effect of vortex shedding from cylinder 1 is ‘felt’ by the downstream cylinder.

Comparing with the experimental results of Lam and Lo (1992), it is interesting to note that their St showed that vortex
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Fig. 6. Normalized power spectral density (PSD) of the fluctuating lift force vs. frequency at a ¼ 0� and L/D=2.54: (a) PSD of

cylinder 1 and (b) PSD of cylinder 4.
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shedding started to cease for cylinders 1 and 2 at L/Do3.94. This is due to the difference in technique used to measure

shedding frequency (counting of shed vortices vs. spectral analysis of the measured fluctuating forces) and a difference

in Re. It should be noted that for an in-line square arrangement, it might not be correct to directly relate the indirect

method of counting vortex-shedding frequencies to the direct measurement of fluctuating forces on cylinders. Due to

the ‘shielding flow pattern’, counting has to be carried out behind the downstream cylinder while the free shear layers

are actually developed from the upstream cylinder. Further comparison of the flow pattern shown in Lam and Lo

(1992) with the present flow visualization revealed that the force measurement results highlight the dependence of

vortex shedding characteristics on the change of flow patterns.

The force measurement results are presented in Fig. 8. Generally, the fluctuating lift and drag force coefficient, C0
L

and C0
D; respectively, of cylinder 4 are more than double that of cylinder 1, thus showing the significant effect of vortex

shedding behind the downstream cylinders and the stabilizing effect of shielding flow on the upstream cylinder. Also,

the magnitude of C0
L is about double that of C0

D for all L/D tested. It is interesting to note that both C0
L and C0

D drop

rapidly as L/D decreases from 3.83 to 3.4 for cylinder 4. This location might correspond to the transition of flow pattern

from a vortex shedding flow to a shear layer attachment flow. On the other hand, during the fully shielded flow of

cylinder 1 in the range of L/D=1.69–2.54, the variation of the fluctuating forces is milder.

As for the mean forces, the mean drag coefficient CD of cylinder 4 becomes negative at L/D=2.11, which is in good

agreement with the results of Lam and Fang (1995). Furthermore, the CD of cylinder 1 rises gradually while the CD of

cylinder 4 drops smoothly as L/D decreases. In contrast, the mean lift coefficient CL for both cylinders 1 and 4 are

negative and the magnitudes decrease swiftly at L/Do2.97. This negative behavior is expected and shows that the top

and bottom cylinders are repelling each other. These results further show that interference between the two rows of side-

by-side cylinders becomes more severe as L/D decreases. At L/D=1.254, it was observed that a bi-stable flow occurs for

the instrumented cylinder at b ¼ 135�; which corresponds to the position of cylinder 4 at a ¼ 0� with Re=4.5� 104.

The history of the signals measured on cylinder 4 for such bi-stable flow (similar to that reported by Lam and Lo, 1992)

is shown in Fig. 9. It is obvious that the transition of the lift, drag and flow-induced vibration took place at the same

time. In this study, it was observed that the length of time between transitions appeared random and unpredictable.
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3.2. Small staggered angle

Fig. 10 shows the flow visualization result at a ¼ 15� for Re=200 and 800 in a water tunnel. At this configuration,

cylinders 3 and 4 rotate to a lower position compared with cylinders 1 and 2, therefore, the influences of cylinder 2 on

cylinder 3, and cylinder 1 on cylinder 4 would be more severe at large spacing ratio. Cylinders 3 and 4 were partially

immersed in the wake of the upstream cylinders, therefore, they would experience impingement of the bypassing vortex

and an oscillating jet flow above their upper surface. Just as discussed in Lam et al. (2002), it was expected that this

would give rise to very strong fluctuating forces on the downstream cylinders and the forces on cylinder 3 would be the

highest. Meanwhile cylinders 3 and 4 would exhibit a second or even a third mode harmonic shedding frequency.

The behavior of St shown in Fig. 11 for this configuration is quite different from that of in-line square configuration

(c/f with Fig. 7). At L/D=3.83 and 3.4, the peak of the shedding frequency in the spectra is very distinct, and there are

additional second and third harmonic frequency for cylinders 3 and 4. However, at L/D=2.97, where a flow pattern of

reattachment of the lower shear layers on the downstream cylinders occurs, several peaks appear in the PSD spectrum

of the upstream cylinders. A comparison of the results of the PSD plots for the upstream cylinders at L/D=3.83 and

2.97 is shown in Fig. 12. The multiple peaks could be partly attributed to the effects of unsteady attachment of shear

layer and the irregularity of vortex shedding. Furthermore, at L/D=2.97, no higher harmonics occurs for cylinders 3

and 4. It is interesting to note that the dominant shedding frequency only appears in the spectrum as a bulge or

somewhat wide and flat peak rather than the commonly observed sharp peak. Decreasing L/D further leads to weaker

and weaker peaks in the dominant shedding frequency for all cylinders. Therefore, the vortex shedding characteristics

could only be identified by carefully studying the shift of the shedding frequency in the spectrum with the change of

oncoming velocity, and this is true especially for the downstream cylinders.

The mean and root mean square forces of the four cylinders are shown in Fig. 13. It is obvious that the fluctuating lift

and drag forces are very large at L/D=3.83 and 3.4 (C0
LE0:65 and C0

DE0:3). The reason has been explained in detail by
Lam et al. (2002). When L/D decreases to an intermediate value, the lower shear layer of cylinders 1 and 2 would

reattach on cylinders 3 and 4. The smaller the L/D, the weaker the oscillation of the shear layer of the upstream

cylinders, and this leads to the fluctuating forces on all cylinders to drop swiftly. Therefore, C0
L and C0

D decrease sharply

at L/D=2.97. A similar, albeit much milder, drop is also noticed for CD for cylinders 3 and 4. However, there was a

large increase in CL for cylinder 4 in the L/D range of 2.11–2.97. Lam and Fang (1995) also detected a similar rise in CL

for cylinder 4 in the same L/D range. The rise of CL could be explained as follows. In the first place, cylinder 4 is

partially immersed in the nearly stationary wake of cylinder 1, which has a lower pressure. Secondly, the gap between
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cylinders 3 and 4 is large enough not to exert a significant downward lift force on cylinder 4. Although cylinder 3 is also

immersed in the wake of cylinder 2, however, the stagnation pressure in the gap flow just under cylinder 3 is low because

it is the pressure of the wake of cylinder 1, so CL of cylinder 3 is not as large as that of cylinder 4.
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3.3. Large staggered angle

With a increases to 30�, cylinders 1 and 3 are almost uniformly located between cylinders 2 and 4. The general flow

pattern at this configuration is presented in Fig. 14 for Re=200 and 800. Therefore, at large L/D, all four cylinders

together behave like a single cylinder. When L/D is decreased to the upper intermediate limit, the interference would

become almost equally severe. This feature is quite different from the interference observed at a ¼ 0� and 15�, which

shows a dominant interference between two cylinders in tandem or staggered. Since cylinder 3 is located downstream of

cylinders 1 and 2, it would experience a strong interference effect. Similar to that at a ¼ 15�; an oscillating jet flow or a
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bypassing vortex could form near cylinder 3, and its influence on the fluctuating lift forces on cylinder 3 becomes severe

only at a relatively small L/D. This means that a narrower jet with higher oscillating frequency has formed. As L/D is

reduced further, the oscillation of the wake of cylinder 1 is suppressed more strongly, so is cylinder 2. Therefore, their

contributions to the fluctuating lift force on cylinder 3 decrease quickly. Cylinder 3 is almost immersed in the wake of

cylinders 1 and 2 when L/Do2.11. This leads to a rapid reduction of CD: On the other hand, since the upper surface of
cylinder 4 is immersed in the wake of cylinder 1, its CL increases rapidly as L/D decreases.

The St vs. L/D plot of the four cylinders is shown in Fig. 15. At L/D=3.83, the St deduced for all four cylinders are

essentially identical. Its value is slightly higher than that obtained for a single cylinder. The largest difference in the

measured St at L/D=3.83 is about 8%, which means that the interference at this L/D is weak. At L/D=3.4, two distinct

frequencies can be identified for all four cylinders, much like the case for a single cylinder. However, at L/D=2.97, only

cylinders 1 and 3 show two distinct frequencies with a slightly higher value for cylinder 1. On reducing L/D further, no

cylinder except cylinder 3 yields a discernible second frequency. In Fig. 15, it is of interest to note that one of the two

curves of St for cylinder 3 is close to that for cylinder 2, while the other curve is close to that of cylinders 1 and 4. This

implies that interference among the cylinders is quite strong.

The variation of the measured forces with L/D at a ¼ 30� is presented in Fig. 16. The fluctuating lift force for cylinder

3 reaches its maximum ðC
0

L ¼ 0:52Þ at L/D=2.97. In contrast, a maximum of C
0

L ¼ 0:65 is found at L/D=3.4 for

a ¼ 15�: The shift of the maximum C
0

L location from a large L/D to a small one with increasing a is caused by the

formation of oscillating narrow jet flow. The reduction of the maximum value is most likely caused by a decrease of the

oncoming flow velocity between cylinders 1 and 2 at smaller L/D (or frontal area). Therefore, it can be said that

the oscillating jet flow is an important mechanism governing flow-induced vibration of cylinder arrays. Another

interesting observation is that, with decreasing L/D, CL for cylinder 4 rises from CL ¼ 0:13 at L/D=3.83 almost steadily
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to CL ¼ 1:06 at L/D=1.69 with a step appearance at L/D=2.97– 3.4. This variation agrees quite well with the results of

Lam and Fang (1995). From the present observation on flow patterns and their comparison with those of Lam and Lo

(1992), a possible explanation could be put forward. At L/D>1.69, the shedding vortices from cylinder 1 always

impinge on the lower half surface of cylinder 3 and entrain into the gap between cylinders 3 and 4. Thus, lower pressure

region is formed under cylinder 3; while a relative strong gap flow with a high velocity and a high stagnation pressure

passes over the upper half of cylinder 3. This gives rise to a negative lift force on cylinder 3. Due to the low-pressure

region between cylinders 3 and 4, the lift force on cylinder 4 is always positive and increases to high values at small L/D.
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3.4. Rotated square array

At a ¼ 45�; this array gives a rotated square configuration. As the arrangement is symmetrical, only the results for

cylinders 1–3 are shown here. A general flow pattern at this a for Re=200 and 800 is shown in Fig. 17. It can be seen

that at a large L/D, cylinder 3 is impinged continuously by the shed vortices from cylinder 1 because cylinder 3 is located

directly downstream of cylinder 1. Hence, C0
L becomes rather large compared with that for a single cylinder. In the

range of intermediate to upper intermediate L/D, a rather interesting interference phenomenon occurs, i.e., the

fluctuating forces of all three cylinders show two prominent frequencies. In the study of Lam and Lo (1992), they found

that, in the flow patterns for L/D>2.4, the wake of cylinder 1 is comparatively narrow. This is due to the gap flow on
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each side rushing into the central region and the suppression of natural expansion of the shear layers in the transverse

direction after separation is restricted. Despite the wake being sandwiched between the gap flow it is not always stable

and stays in place in the middle. Sometimes the wake might be biased upward or downward. It is believed that the

instability of the wake of cylinder 1 and its shift are the cause of two dominant frequencies observed in every cylinder.

On the other hand, the C0
L on cylinder 3 would gradually increase until it reaches its maximum, at which point the

contributions to the fluctuating lift force of the oncoming vortices and the disturbed gap flow on both sides of cylinder 3

are rather large. Reducing further L/D to o1.69, vortex shedding from cylinder 1 disappeared, but vortex shedding

from cylinder 2 still exists even though its strength decreases quickly.

The St vs. L/D plot is shown in Fig. 18. A second branch of St for cylinder 1 appears in the range of L/D=2.11–3.4,

while that for cylinder 2 shows up at L/D=2.11–3.83 and for cylinder 3 at L/D=1.69–2.97. The result shows that the St

values for cylinder 1 and 2 increase sharply as L/D drops below 2.54; while there is a sudden drop of St value for

cylinder 3 below L/D=2.11. Examining the figure more closely, it is noticed that in the range L/D=2.1–2.97, St has two

distinctive branches. The difference between the two branches becomes larger with decreasing L/D.

The variation of forces with L/D at a ¼ 45� are shown in Fig. 19. In Fig. 19(a), it is interesting to note that the

fluctuating lift force for cylinder 3 at L/D=3.83 are given by C0
L ¼ 0:5 and C0

D ¼ 0:15; which are almost equal to those

for cylinder 3 at L/D=3.83 and a ¼ 0�: The fluctuating lift force then rises to C0
L ¼ 0:75 at L/D=2.97, and this C0

L is the

maximum value for all a and L/D examined. As for CL; there is a sharp jump for cylinder 2 at L/D=1.69, whereas at

large L/D, the CL for every cylinder remains a relatively small value. This can be explained by the fact that the gap flow

on each side of cylinder 2 would reach their maximum velocity and tilt angle at the right L/D. Located directly

downstream of cylinder 1, the CD on cylinder 3 is small compared with that of cylinders 1 and 2. It is impossible for

cylinder 3 to be completely shielded by cylinder 1 because cylinders 2 and 4 are located on both sides of cylinder 3 and

would disturb the flow around it seriously.
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3.5. Variation of forces with l/d and b

As a basic element, four-cylinder array in a square configuration has many direct applications in different engineering

disciplines. Therefore, it is useful to study the variation of mean forces with b and L/D because rather large unsteady

force might arise as a consequence of a sudden change of direction of the oncoming flow. Fig. 20 shows some typical

results of CL and CD vs. b: The CL curve for L/D=3.83 clearly shows a sharp variation at b ¼ 135�; which corresponds
to the location of cylinders 3 or 4 at a ¼ 0�: Similarly, the CL curve for L/D=2.54 also shows a rapid variation in the

range of b ¼ 1202150�; which is the location of cylinders 3 and 4 at a ¼ 0215�: This means that a small change of a at
a ¼ 70215� could cause large variation of CL on cylinders 3 or 4. Consequently, in an unsteady flow, the change of

direction of the oncoming flow might lead to a fairly substantial variation of the unsteady lift force on cylinders 3 and 4.

Another interesting point is to observe the variations of C0
L and C0

D with L/D and b: Four plots of C0
L and C0

D vs. b at

different L/D are shown in Fig. 21. At large L/D, such as L/D=3.83 and 3.4, maximum C0
L and C0

D occurs at b ¼ 150�

which is the location of cylinder 3 at a ¼ 15�: However, at L/D=2.97, the location where maximum C0
L and C0

D occurs

gradually moves to b ¼ 165� and 180�, and this b corresponds to the position of cylinder 3 at a ¼ 30� and 45�,

respectively. Further reducing L/D to 2.11, the location of the maximum C0
L and C0

D shifts to b ¼ 180�; which
corresponds to the position of cylinder 3 at a ¼ 45�; with rather small values at other b: As discussed above, the shift of
the maximum C0

L and C0
D is closely related to the change of flow patterns. Consequently, for engineering applications, it

should be noted that a small change in the oncoming flow direction at a ¼ 70215� contributes significantly to flow-

induced vibration on the downstream cylinders. Another important contributor to flow-induced vibration of the

downstream cylinders is the oncoming vortex or the formation of an oscillating narrow gap flow, which could give rise

to large rms forces on the downstream cylinders and lead to serious consequences.

4. Conclusions

Extensive measurements have been carried out on the mean and fluctuating forces and their associated St of four

cylinders in a square arrangement in a cross flow using a piezo-electric load cell. Six different L/D ranging from 3.83 to

1.69 at an interval of 0.43, and 13 different incident angles b ranging from 0� to 180� at an interval of 15�, which

correspond to four different array angles a ¼ 0�; 15�, 30� and 45�, were covered in this investigation. Moreover, four

different oncoming velocities, which correspond to Re=2.25� 104 to 4.5� 104 based on the oncoming uniform flow

and the diameter of the individual cylinder, were conducted for all arrangements. Some useful results are obtained and

they are summarized as follows.

(i) The anticipated results, that the upstream cylinders will usually experience larger mean drag force CD than the

downstream ones, while the downstream cylinders are usually subjected to higher fluctuating forces under the

influence of unsteady wake vortices, were realized.

(ii) Flow patterns, i.e., the development and the interferences of the free shear layers and the distribution of the wakes

of the cylinders play a key role in the variation of forces and their frequencies. Furthermore, flow patterns are the

key to understand the results and the behavior of St and the fluctuating forces. Generally, the variation of the

forces and St can be divided into three different stages according to L/D at every array angle a, but the range of
L/D varies for different a:

(iii) At large L/D, the dominant mechanism on flow-induced vibration is the shear layers and their interference. In

general, a dominant frequency is discernible in the PSD force spectrum of every cylinder, and the rms fluctuating

forces are greater than those at a smaller L/D.

(iv) At intermediate L/D, the primary mechanism is the almost stationary wakes and their interference on different

cylinders. Since the downstream cylinders are completely or partly immersed in the nearly stationary wakes of the

upstream ones, a rapid decrease of the root mean square fluctuating forces on the downstream cylinders usually

follows. An exception is observed at a ¼ 45�, where an increase rather than a decrease is recorded.

(v) At small L/D, the four cylinders enclosed a very small region of fluid. Consequently, the gap flow between them

would vary greatly with a small change of L/D. This gives rise to a major characteristic; that is, the large variation

of mean forces with L/D.

(vi) Two important mechanisms responsible for flow-induced vibration are analyzed and the fluctuating forces have

also been measured. The first one is the formation of an oscillating narrow jet flow around the downstream

cylinders, the typical results are represented by the C0
L and C0

D values deduced for cylinder 3 at a ¼ 15� and at

L/D=3.4. The second one is the impingement of the oncoming shed vortices on the downstream cylinders. Typical

results are indicated by the C0
L and C0

D values of cylinder 3 at a ¼ 0� and 45� and at L/D=3.83. Furthermore,
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under the influence of a combination of the two mechanisms, C0
L and C0

D would increase substantially, such as the

C0
L and C0

D of cylinder 3 at a ¼ 45� and L/D=2.97. The change of direction of the oncoming flow is another

mechanism that contributes to flow-induced vibration in unsteady flow around cylinders.
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